Please note: PreScouter provides secondary research and is NOT associated with the experiments or getting volunteers for clinical trials.
Stem cell therapies have great potential to cure currently untreatable diseases and to even extend lifespans. Due to their differentiating qualities, they have been used for novel regenerative protocols. Ongoing progress towards the clinical use of dental pulp stem cells has recently expanded the possibilities for clinical applications based on pulp and periodontal tissue regeneration. Dental stem cells are a kind of mesenchymal cell that reside within the dental pulp and are classified as postnatal stem cell populations.
Clinically, what’s going on?
At present, there are two approved clinical trials and one clinical trial protocol related to dental stem cells that have not yet started recruiting. Nevertheless, these trials are still in an early phase that are testing the feasibility of the stem cells and the tolerance of the stem cell implantation, but have not applied the cells on patients for accruing diseases.
Let’s use your fallen teeth to save your teeth!
One trial in China is using stem cells from human exfoliated deciduous teeth (SHED) as the main target for investigation. Investigators from China are aiming to explore and clarify if autologous (cells or tissues obtained from the same individual) SHED stem cell transplantation can efficiently regenerate pulp (the center part of a tooth) and periodontal (connective tissue known as gum) tissue in immature permanent teeth and necrotic pulp of teeth in humans.
Millions of teeth are accidentally and forcibly detached each year, especially causing losses of immature permanent teeth in children. This clinical trial is starting to recruit patients with immature permanent teeth and pulp necrosis. SHED will be used as the cell source for regenerating pulp and periodontal tissue in immature teeth.
How about using your teeth to save your bone?
One of the main limitations in bone regeneration is lack of vascularization of newly sharp tissue. A new trial starting in France is aiming to use the dental stem cells of a simple and non-invasive tissue source such as dental pulp to develop a brand new pre-vascularized tissue-engineered bone construct. The dental pulp stem cells were isolated from the dental tissue of patients’ wisdom teeth and then used to assess their endothelial and osteoblastic differentiation to obtain pre-vascularized tissue engineered bone construct. Furthermore, one commercial differentiation medium is also used to evaluate its effect on the cell differentiation and production of a prevascularized bone construct.
Using dental stem cells to treat post-stroke disability:
TOOTH (The Open study Of dental pulp stem cell Therapy in Humans), a clinical trial protocol, is an open study, phase 1, single-blind clinical trial being conducted by Australian researchers. The protocol is investigating the use of dental pulp stem cell therapy for stroke survivors with chronic disability, with the aims of determining the maximum tolerable dose of the cell therapy, and the safety and feasibility for patients with chronic stroke.
What future clinical applications of dental pulp stem cells await?
Taken together with those trials, on going or just a start, the regenerating methods are still emphasized on the early phase clinical study of improving human diseases. Although clinical trials using dental pulp stem cells for treating human diseases are not very common, preclinical research has broadened the extent of potential clinical applications. Dental stem cells can differentiate into several cell types, such as neurons, adipocytes, and chondrocytes. From that, their therapeutic potential has been identified for various conditions, including neurological disorders, angiogenesis and vasculogenesis, liver disease, diabetes mellitus, and for regenerative ocular therapy, bone tissue engineering, and, of course, therapeutic applications in dentistry such as regenerative endodontic therapy, dentin regeneration, regenerative periodontal therapy, and bioengineered teeth.
Stem cell therapies have been a hot topic of research for years, but progress toward clinical trials for applications to humans has been slow due to ethical concerns and source obtained for transplantation. Dental pulp stem cells could resolve both these issues, by using human exfoliated deciduous teeth instead of invasive source such as embryonic stem cells. Pending successful completion of ongoing clinical trials, we can hope to see further work towards applying regenerative therapies based on dental stem cells for other organs, ultimately generating novel therapies to cure currently untreatable diseases.